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We p r o p o s e  an a n a l y t i c a l  m e t h o d  of c a l c u l a t i n g  the  e n t r a i n m e n t  of wa l l  m a t e r i a l  when an i n e r t  
g a s  i s  a d d i t i o n a l l y  i n j e c t e d  t o t h a t  w a l l  in a t u r b u l e n t  b o u n d a r y  l a y e r .  The  c a l c u l a t i o n  i s  c a r r i e d  
out fo r  the  c a s e  of c a r b o n  e n t r a i n m e n t  when a dd i t i ona l  a r g o n  and h e l i u m  a r e  i n j e c t e d  th rough  
a c a r b o n  w a l l  when bg -- cons t  u n d e r  c ond i t i ons  of s u b s t a n t i a l  n o n i s o t h e r m i c i t y .  

In e q u i p m e n t - b u i l d i n g  p r a c t i c e  we f r e q u e n t l y  e n c o u n t e r  c a s e s  in which  a m a t e r i a l  s t r e a m l i n e d  by  a 
f low i s  d e c o m p o s e d  a s  a c o n s e q u e n c e  of the  t h e r m a l  e f fec t  of a high en tha lpy .  The  g a s e o u s  c o m p o n e n t s  in 
t h i s  c a s e  a r e  i n j e c t e d  into  the  b o u n d a r y  l a y e r ,  and the  s o l i d  r e s i d u e  i s  r e m o v e d  by  m e a n s  of c h e m i c a l  e r o -  
s ion .  

I t  i s  the  p u r p o s e  of th i s  p a p e r  to  d e t e r m i n e  the  m a g n i t u d e  of w e a r  which  i s  e x p e r i e n c e d  by  the s u r f a c e  
t h rough  which  a d i f f e r e n t  i n e r t  g a s  i s  i n j e c t e d .  

1. F o r  a c h e m i c a l l y  r e a c t i n g  g a s  the  equa t ions  of e n e r g y  and con t inu i ty  f o r  the  i - t h  c o m p o n e n t  of the  
e f f ec t i ve  b i n a r y  m i x t u r e ,  if t h e s e  a r e  w r i t t e n  in t e r m s  of the  to ta l  en tha lpy  and the r e d u c e d  c o n c e n t r a t i o n ,  
w i l l  be  of the  c o n v e n t i o n a l  f o r m  [1, 2]. Wi th  c o n s i d e r a t i o n  of the  c on t i nu i t y  equa t ion  f o r  a f l a t  b o u n d a r y  l a y e r  
we r e d u c e  the  equa t ion  of m a s s  - a f t e r  s i m p l e  t r a n s f o r m a t i o n s ,  to the  i n t e g r a l  r e l a t i o n s h i p  

(R% AKi)  j~ \ Og /~ 
AK ~ dx ReL - -  t~eL (1) 

p0Uo PouoAK ~ 

Here Reg and Re L are characteristic Reynolds numbers written, respectively, for the mass-loss thickness 
5~* and the characteristic linear dimension L: 

5 
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The  m a s s  f low of the  wa l l  i s  w r i t t e n  in the  f o r m  of the  s u m  of the  t r a n s v e r s e  f low g e n e r a t e d  by  r e -  
m o v a l  of wa l l  m a t e r i a l  and  the  m a s s  f low of the  g a s  a d d i t i o n a l l y  i n j e c t e d  t h rough  the  wal l ,  i . e . ,  

]w -~ ]wall + ]G (2) 

The  o v e r a l l  w a l l - p e r m e a b i l i t y  p a r a m e t e r ,  in con junc t ion  wi th  Eq.  (2), i s  e x p r e s s e d  by  the  equa t ion  

bt = bwat1+ b G (3) 
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In analogy with heat  t r ans fe r ,  we will denote the r ight -hand m e m b e r  of the in tegra l  re la t ionship  (1) 
by the Stanton diffusion number:  

/ 
PDI2 \ Og ]~ = Sty-- ]w _ /wal l_  ]G (4) 

pouoAK ~ 9ouobi 9ouobr 9ou.b G 

F r o m  the m a s s - b a l a n c e  equation for the i - th  component  at the wall, with considera t ion of the identi t ies 
(4), we can de te rmine  the wa l l - pe rm eab i l i t y  p a r a m e t e r s :  

bwall = (Kwal~ + bi), (5) 

K ~ bG= ( G)~ (1 + b~), (6) 

bi = (K~176176 --(K~176 �9 (7) (Ko)  

0 is the reduced concentra t ion of the wall  ma te r ia l ;  {K~) w is the concentra t ion of the injected Here  Kwall 
gas  at  the wall; K] is the reduced concentra t ion of that component  of the gas  flow that has not pene t ra ted  
the wall, and which en ters  into chemica l  in teract ion with the wall  m a t e r i a l .  

Fo r  example,  in the region of diffusion reac t ion  between the carbon and the oxidizer,  the bas ic  p rod-  
uct of the reac t ion  is ca rbon  monoxide: 

C + O ~ C O .  (8) 

F r o m  the s to ieh iomet r ic  re la t ionship  of (8) we have 

16 (KO)w. (9) (Ko~ = 

F r o m  (7) in conjunction with (9) we obtain the express ion  for  the wa l l - pe rmeab i l i t y  p a r a m e t e r  which 
is a consequence of chemica l  e ros ion  in the case  of reac t ion  (8): 

3 (KoO)o (10) bwail-- ~ 

The pe rmeab i l i t y  p a r a m e t e r  bwall for  the diffusion region of reac t ion  is  thus a constant  de te rmined  
by the oxidation potential  of the bas ic  flow and the nature  of the ma t e r i a l  being removed;  it is independent 
of the magnitude of the additional iner t  inhomogeneous gas  injected through the sur face  being worn away.  

2. In analogy with heat  t r ans fe r ,  we adopt the assumpt ion  that the m a s s - t r a n s f e r  law is not affected 
by pe r tu rba t ion  f ac to r s  (nonisothermiei ty,  the t r a n s v e r s e  flow genera ted  by chemica l  reac t ions  and injec-  
tion) and for  s tandard  conditions it is wri t ten in the f o r m  [3, 4] (in the region 200 < Re~* < 104) 

0,0,28 ( ~ )0.25 (11) 
St~ Reg *~176 \ ~o ] " 

In tegra l  equation (1), with cons idera t ion  of definition (4), is t r a n s f o r m e d  to 

d (Reg*AK~) 
AKOd- ~ " = R%Sto~ ~a(1 + bi)- (12) 

Here  ff'h = Stg/St0g is the re la t ive  coeff icient  of heat  and m a s s  t r ans fe r ,  by means  of which we take into 
cons idera t ion  the effect  of nonisothermici ty ,  injection, etc .  

F o r  the inhomogeneous injection of gases  which re su l t  in chemica l  reac t ions  at the su r face  under con-  
ditions of substant ia l  nonisothermici ty ,  the re la t ive  m a s s - t r a n s f e r  law is defined as 

Here  

~i = hJho; 42 --  Mo/M~; ~P3 = cpw/%o. 

The c r i t i ca l  injection p a r a m e t e r  b c r  is a lso  a function of r r and r 

(13) 
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Fig. I. Graphite erosion in the presence of argon and helium injection: 
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Fig.  2 

1) without  ad-  

ditional injection; 2, 3) with additional injection of argon at bG= 0.5 and 2.9, respectively; 
4, 5) with additional injection of helium at b G = 0.5 and 2.0, respectively. 

Fig. 2. Effect of nonisothermicity and injection on the magnitude of graphite erosion: 1) 
effect of nonisothermicity on injection of argon, bG= 2.0; 2) graphite erosion without ad- 
ditional gas injection; 3) combined effect of nonisothermicity and injection for argon, b G 
-- 2.0; 4) effect of nonisothermicity on erosion with injection of helium when bG= 2.0; 5) 
effect of nonisothermieity and injection for helium with bG= 2.0. 

To determine the magnitude of the Stanton diffusion number, we have to find Re~*. 

The solution of (12), with c o n s i d e r a t i o n  of (11), has  the fol lowing f o r m  [3]- 

x 
. , o.o,o % ; ( ) 7  Re~ = [ sco~5 (AKo)I,~ v~(~+ O (AK~ '~5 ~' o ~ ;  o,~. 

0 

(14) 

To p r o c e s s  the e x p e r i m e n t a l  data, it  i s  conven i en t  to use  the method of loca l  s i m u l a t i o n  [3]. F r o m  
the i n t e g r a l  r e l a t i o n s h i p  (1), if i t  i s  w r i t t e n  in  t e r m s  of the e n t r a i n e d  c ompone n t  of the wal l  m a t e r i a l ,  with 
c o n s i d e r a t i o n  g iven  to i t s  m a s s  b a l a n c e  at the wall ,  we obtain 

x 

.[ ]walldX 
Re~* -- 0 (15) 

0 

3. Let us examine the case of the wearing down of graphite heated to 2000~ An inert gas (argon, 
helium, etc.) is injected through the graphite. The injection obeys the law bG= const over the length of 
the plate. The main flow is air at 290~ 

In this case, we see from (3) and (I0), with consideration of (5) and (6), that AK~ and ~h are constant 
over the length of the boundary layer. 

Expression (14) for Re~* is thus simplified to 

Re~ = 0.016 RexSc-~ (16) 

With c o n s i d e r a t i o n  of (16), we w r i t e  the d i m e n s i o n l e s s  Stanton n u m b e r  on the b a s i s  of (11) in  the f o r m  

- o ~  ( ~ / ~  " 
St0g = 0.029 Re~ ' Sc -~ T~-~ bi) -~ \~o /  (17) 

The  magn i tude  of the m a s s  e n t r a i n m e n t  of the wal l  m a t e r i a l  is  found f r o m  the equat ion  

�9 o + ]wal l :  0.029 bwallY0tt o ~. x ~h 
\ ~oJ 

(18) 
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Here v is the kinematic viscosi ty;  
at the wall. 

For  air  the oxidation potential is given bybwall  = 0.173. k t a w a l l t e m p e r a t u r e  about 1700~ we have a 
diffusion regime for the reaction between the oxygen and the carbon. The p r i m a r y  product of reaction is 
CO. 

F r o m  the s toichiometr ic  relationship of react ion (8), in conjunction with identity (5), we find the 
weight content of the CO product at the wall, i . e . ,  

(Kco)=, = 28 bw all (19) 
12 1 + b i  

The concentrat ion of the inert  component of the basic flow (nitrogen in this case), diffusing toward the 
wall, is determined f rom the relationship 

(20) (Ki~)w l + b ,  

The weight fract ion of the injected gas is found f rom (6). 

The molecular  weight and the heat capaci ty of the gas mixture at the wall t empera ture  a re  calculated 
with the famil iar  formulas  for a multicomponent mixture.  

The v iscos i ty  of the gas mixture at the wall - at the t empera tu re  of the wall - can be determined f rom 
the Mann formula  [5], i . e . ,  

% = [/:~1= n' ]-I " ~ '  _1 (21) 

n i a re  the mola r  fract ions of the components making up the gas mixture 

The Schmidt number  Sc is taken f rom the pa rame te r s  of the basic flow, at the t empera tu re  of that 
flow. 

Figure  1 shows the resul ts  obtained in calculating the erosion of a graphite surface when additional 
quantities of argon and helium are  injected through that surface.  We see that on injection of argon with 
b G-  2, and the identical wall temperature ,  the erosion of the carbon at mass  flow rate of 100 kg/m 2 -sec 
for the main flow diminishes,  on the average,  by a fac tor  of 1.8, while with injection of helium it diminishes 
by a factor  of 4.8 in compar ison with the magnitude of the erosion without injection. 

On injection of helium, when bG= 20, the graphite erosion is reduced by a factor  of almost  30, with 
the relat ive average  flow rate  for the injected gas on a plate 200 mm in length ( referred to 70u0) amounting 
to "~ 0.8% in this ease .  

Figure  2 shows the effect of each factor  separately,  i . e . ,  the nonisothermiei ty and injection, for the 
argon and the helium, provided that bG= 2.0. 

We see that the enthalpy fac tor  r in the ease of argon injection is reduced in compar ison t o t h e  e ro-  
sion ease  without additional injection, and this in turn increases  the erosion by a factor  of 1.2. 

However, in the ease  of helium injection the enthalpy fac tor  diminishes the mass  erosion by a fae*or 
of approximately 2.2 in compar ison  with the mass  erosion that takes place without additional injection. How- 
ever, the relat ive contribution of the injection in each of these eases  (injection of argon and of helium), cal-  
culated f rom the expression 

I, b,Vh 122) 
Vinj= k - - ' ~ c r  / ' 

is vir tual ly  identical and equal to 0.45. 

The magnitude of the injected gas at the plate is calculated f rom the equation 

~e-O 2Sc-O.6 ...o 8.1 ( ~*w ] 0.2 ' ]G= 0.029 h~u • * " wh ( + b0 -~ (23) 
\~o / 

Thus the magnitude of the worn wall mater ia l  depends on the overall  wal l -permeabi l i ty  pa rame te r  b 1. 
With an increase  in the flow ra te  for  the injected inert  gas the mass  flow rate  of the entrained surface ma-  
ter ia l  inc reases .  
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Injection of gases with a molecular weight that is smaller in comparison with the basic flow makes it 
possible to reduce wall erosion both as a consequence of nonisothermicity and as a result of the injection 
effect. 
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NOTATION 

is the Stanton diffusion number;  
is the Reynolds number  which is de te rmined  f r o m  the thickness  of the m a s s  that is lost; 
is the Reynolds number  along the length of the boundary  layer ;  
is the m a s s - l o s s  thickness;  
is the t r a n s v e r s e  m a s s  flow resul t ing  f r o m  the chemica l  e ros ion  of the wall  ma te r ia l ;  
is the t r a n s v e r s e  m a s s  flow produced by gas  injection; 
is  the total  t r a n s v e r s e  wall  flow; 
~s the reduced weight concentra t ion of the i - th  component  of the mixture;  
is  the density; 
is  the ve loc i ty  component  along the length of the boundary layer ;  
is the ve loc i ty  component  no rm a l  to the motion; 
is the length of the boundary  layer ;  
is the d i f ference  between the reduced concent ra t ions  of the i - th  component  in the main flow and 

at the wall; 
is the d imens ion less  length of the boundary  layer ;  
is  the diffusion fac to r  for  the effect ive b ina ry  mixture;  
is the b o u n d a r y - l a y e r  th ickness;  
is the overa l l  w a l l - p e r m e a b i l i t y  p a r a m e t e r ;  
is the wall  pe rmeab i l i t y  p a r a m e t e r  which is reduced by the l a t e ra l  flow resul t ing f r o m  the chem-  

ical  e ros ion  of the wall  ma te r i a l ;  
is  the p e r m e a b i l i t y  p a r a m e t e r  for  the wall  subjected to injection; 
is the coeff icient  of dynamic viscosi ty ;  
is the coeff icient  of k inemat ic  v iscosi ty ;  
is the Schmidt number ;  
is the b o u n d a r y - l a y e r  separa t ion  p a r a m e t e r ,  r e f e r r e d  to the Stanton number  under  s tandard  con-  

ditions; 
is the m a s s  flow r a t e  of the main flow; 
are ,  r e spec t ive ly ,  the r a t ios  of the enthalpies,  the mo lecu l a r  weights,  and the heat  capaci t ies ;  
is  the total  enthalpy of the gas  mixture;  
is  the mo lecu l a r  weight of the mixture;  
is  the heat  capaci ty  of the mixture;  
is the m o l a r  f rac t ion  of the i - th  component  of the gas  mixture;  
is the absolute  t e m p e r a t u r e .  

S u b s c r i p t s  

w denotes the gas  p a r a m e t e r s  at the wall; 
0 denotes the co re  of the flow and the oxidizer;  
wall  denotes the wall  ma te r i a l ;  
G denotes the gas .  

i. 

2. 
3. 

4. 
5. 
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